Regional Workshop on Accelerated Implementation of WHO Guidelines on TB Prevention, Diagnosis, and Drug-Resistant TB (DR-TB) Treatment

Implementation of tNGS for **DR-TB** screening in the region of Karalkapakstan, Uzbekistan

Diana Gomez Ospina, MPH

Public Health Specialist (Laboratory)

Medecins Sans Frontieres, OC-Amsterdam

Content

Background

- Intro TB diagnosis
- MSF Program in Karakalpakstan
- Diagnosis of DRTB in Karakalpakstan
- Testing in in Karakalpakstan

tNGS in Nukus TB1 Hospital lab

- Preparation
- Implementation
- Routine testing (planning)
 Implementation Challenges
 Current Benefits and Future Planning

Global State of TB Diagnosis

	 	***** ***** *****	
	**** *****	****	
	 ***** *****	***** ***** *****	
	****	***** ***** *****	
1			

~ 10.8 M people got TB

400,000 were MDR/RR-TB

2.6 M Unnotified Cases

8.2 M Notified Cases

Regional Workshop on Accelerated Implementation of WHO Guidelines on TB Prevention, Diagnosis, and Drug-Resistant TB (DR-TB) Treatment

World Health Organization

Global State of TB Diagnosis

400,000 were MDR/RR-TB	~4M Diagnosed with a mWRD			
4.2M diagnosed without mWDRs				

8.2 M Notified Cases

43 countries estimated to have achieved reduction of ≥35% since 2015

MSF Program in Karakalpakstan 📗

Implementing a DOTS to support TB care		Comprehensive TB care for all • Management DRTB cases		END of TB P Integration of BDQ/LZD/M routine	END of TB PRACTECAL trial Integration of BDQ/LZD/MFX DST in routine		Implementation of tNGS for routine diagnosis	
1998-2		-2010	2016		2	2023		
1998		2	2010	2	2022		2024	

Regional Workshop on Accelerated Implementation of WHO Guidelines on TB Prevention, Diagnosis, and Drug-Resistant TB (DR-TB) Treatment

Republic of Karakalpakstan

Tashkent

Tashkent

Diagnosis of DRTB in Karakalpakstan

Testing in Karakalpakstan

Xpert Rif-R Detected

DST for New/Repurpose Drugs

Is the Next Generation Sequencing the solution for DR-TB < Fas detection in KKP?

- ✓ Fast diagnosis for SL and new drugs TB resistance profile (Short TAT)
- Comprehensive (includes rare mutations, TB strain types,)
- ✓ Lineages-epidemiology and surveillance

Targeted NGS in Karakalpakstan Approach

NGS Roadmap and Challenges

Initiation of NGS project NGS working group created	Major delay in r procurement. D Easter EU confli Delay recruiting	Major delay in reagent procurement. Due to COVID and Easter EU conflict Delay recruiting NGS implementer		Pilot 1: retrospective testing of RR isolates (from 2022 – 2023) Pilot 2: Pilot using routine samples (test algorithm and flow)		
20	20	2023		<u>Nov 2024</u>		
2019	P/	PAUSE		024		
Recruitment of No Site infrastructure Ordering equipme	GS implementer e rehabilitation ent and reagents	Recruitment of NG Implementer Preparation of SOF Illumina iSeq100 in	S Lab Ps Installation	Implementation routine diagnos	n of tNGS for sis	
		Recruitment of NG Training started	S lab tech			

Human Resources

- International mobile staff was identified for initial assessment and implementation
- Recruitment of Lab Technician

Readiness assessment

- Carried by IMS:
 - Check infrastruture needs
 - Supplies required
 - Identification of suppliers and setting up contracts

Budgeting

Rehabilitation space and updating data systems

Placing initial order

Reagents and Systems Selected

DNA Extraction and Purification

illumination and the second s

Library Prep Kit

DEEPLEX DEEPLEX ACTIVATION CODE (CONFIDENTIAL) DEMO-1234-1234-1234 Sequence 8/9/6 iSeq" 100 16 Sequencer and Cartridge

Multiplex PCR kit

Jnitaid

SAVE LIVES FASTER

Max. 3 2022 14:31:18

000

Deeplex Myc-TB V3.0

GenoScreen

SAMPLE ID: MIX

late of submissio

nalysis mode

Experiment se

Contra

World Health

Organization

Purification post-

DEEPLEX® Myc-TB Report

TBIPIUS

PCR/library

Initial staff training

- Implementer training in Deeplex workflow at ITM
- Training of the lab staff
 - Implementer
 - Genoscreen trainer

Finalization SOPs and Job Aids including translations to Karakalpak Pilot 1: retrospective testing of RR isolates

- Verification
- Feasibility

Pilot 2: Pilot using routine samples

- Fine-tune the methods using sample sediment
- Test algorithm and workflow

Setup Pilot 1: Test Verification using Isolates

Results Pilot 1: Test Verification using Isolates

<u>Drugs</u>	<u>Sensitivity</u> (%) Cl95	Specificity (%) Cl95	<u>PPV</u> (%)	<u>NPV</u> (%)	Accuracy (%)	<u>LR+</u>	<u>LR-</u>
LFX	83 (53-100)	98 (93-100)	83	98	96	33.3	0.17
MFX 0.25	83 (53-100)	98 (93-100)	83	98	96	33.3	0.17
MFX 1.0	80 (45-100)	95 (86-100)	67	98	93	16.4	0.21
BDQ	88 (77-99)	100	100	97	97	>100	0.17
CFZ	100	95 (91-98)	71	100	95	17.3	0.06
LZD	67 (13-100)	100	100	99	99	>100	0.33
АМК	80 (45-100)	95 (88-100)	67	97	93	16	0.21

Pilot 1: Messages

Lessons learned

- Extraction Protocol was modified (digestion lysozyme overnight)
- Takes a few runs to get used to the flow from DNA extraction to sequencing
- Contamination was observed, some troubleshooting was needed
- Issues with coverage and depth rrs genes (AMK)

Conclusions from Pilot 1

- Great performance for all drugs (except LZD – due to low number of LZN-R isolates)
- tNGS Deeplex can be used to "Rule In" resistance to all drugs tested.
- tNGS Deeplex can be used to "Rule Out" resistance to all drugs tested except BDQ and LZD
 - Limited information on mutations associated with resistance
 - $\circ~$ Limited number of strains with DST-R

Setup Pilot 2: Test Algorithm and Workflow

Results Pilot 2: Test Workflow and Algorithm

<u>Drugs</u>	<u>Sensitivity</u> (%) Cl95	Specificity (%) Cl95	<u>PPV</u> (%)	<u>NPV</u> (%)	Accuracy (%)	<u>LR+</u>	<u>LR-</u>
LFX	97 (91-100)	94 (90-98)	83	99	95	16.4	0.03
MFX 0.25	93 (86-100)	100	100	97	98	>100	0.07
MFX 1.0	100	82 (75-88)	39	100	84	5.4	<0.0001
BDQ*	100	100	100	100	100	>100	<0.0001
CFZ*	100	100	100	100	100	>100	<0.0001
LZD OR	Unsufficient	Data					
АМК	100	99 (97-100)	96	100	99	70.4	0.02

Pilot 2: Messages

Lessons learned

- Extraction Protocol was modified for a second time
- Issues with coverage and depth *rrs* genes (AMK) were higher when dealing with sediments
- Must add other criteria to keep a decent TAT during routine use. Priority other DR cases by rWRDs
- Despite adding additional samples.
 TAT of results are almost 2 weeks
- Some uncharacterized mutations needed double check using 2023 WHO catalogue

ol was modified for a **Conclusions from Pilot 2**

- Workflow and algorithm was successfully tested with minor adjustments
- Very few resistant strains on this cohort
- tNGS to screen DR on new drugs is promising but closed monitoring is recommended since Pilot 1 indicated good to moderate sensitivity due to test coverage

Lessons learnt and optimization from pilots

- Modifications were done to SOPs to improve results
- Modified indications for testing

Diagnostic algorithm tNGS

• Same as recommended by WHO Handbook 3

Considerations for testing (weekly testing)

- ALL Xpert Ultra Rif-R results (priority 1)
- Suspects of treatment failure (priority 2)
- INH-R samples or isolates (priority 3)
- DR-TB with missing drug test (PZA)

Validation results and their delivery to clinicians

- Simple report was developed to delivery of results Enroll tNGS in the current EQA program with Gauting
- First batch submitted and successfully passed in December 2024

DNA Extraction

Post-PCR Purification

Multiplex PCR (Deeplex Myc-TB)

Library Preparation

Assess impact of current global funding climate in the decentralization and access to tNGS

To incorporate tNGS as part of the NTP and NTRL planning

Future utilization of tNGS to include other applications (routine, surveillance, research, etc.)

Offer tNGS to other regions besides KKP

Long term planning:

- Scaling up
- Identification of additional funding
- Work in coordination with NRL

Implementation Challenges and Mitigation Measures

Infrastructure

- Lab infrastructure were insufficient
 - Additional rehabilitation ⇒ unidirectionality
 - o Reorganization of space
- Internet connectivity was modified

Supplies

- Supply and procurement of short shelf life reagents
- Supply team working hard to ensure ALL required items are available.
- Constant communication

Trainings

- Baseline molecular biology knowledge
- Language barrier (software and interface are in English

Technical (already discussed in the pilots)

- DNA Extraction
- Issues with rrs gene
- Uncharacterized mutations
- Contamination observe

Data Management and Reporting

- Instrument storage is limited.
- Incorporating NGS in routine reporting required updating the LIS

Current Benefits and Future Plans

Comprehensive Test

 MTB Identification + Lineage + 13 Drugs

Turn Around Time (TAT)

- Sample sediments between 7-14 days
- Isolates between 18-21 days

Mutations and Surveillance

 Undertanding the mutations, frecuency and distribution would be important to intervention strategies

Potential Research Tool

- Epidemiological and Research studies.
 - Surveillance analysis of data obtained from the pilot 1
- Contribute into the growing mutation catalogue

Patient Management

- Monitor the performance of routine testing of tNGS by using key indicators
- Shorten the TAT of diagnosis will increase the likelihood of treatment success

Advocacy

• Influence market on cost reduction and access

Acknowledgments

Nukus Lab Team

Data & Lab Team, MSF

Supply Team, MSF

Biomed Team, MSF

Mercy Oluya (Former Lab Manager)

Marie Gasasira (Former NGS Manager)

Regional Workshop on Accelerated Implementation of WHO Guidelines on TB Prevention, Diagnosis, and Drug-Resistant TB (DR-TB) Treatment

Antonio Pedrotta (Former Consultant for NGS)

Gulnara Tolepova (NGS Lab Technologist)

