

Опыт внедрения целевого секвенирования генома M.tuberculosis в программных условиях в Кыргызской Республике

Сыдыкова М.М., заведующая НРЛ НЦФ Бишкек, Кыргызстан 29.04.2025

I. Внедрение секвенирования полного генома МБТ и таргетного секвенирования.

Полногеномное секвенирование, Проект Stop TTH, USAID:

- Реализовано 8 рабочих пакетов
- Длительность проекта: 24 месяца (Июль 2017-Июль 2019)

Tapreтное секвенирование, SeqMTBNet, Германское Правительство

Длительность проекта (2019-2022)

To eliminate IB

Evgeny Sahalchyk Great Morebeldjal Robert-Koch-Alee 2 D-82131 Gauting H.Hoffmann@imhred.de Tel. +49 (89) 85791 5410 Fax +49 (89) 85791 5418


Учреждения-партнёры проекта STOP TTH:

При финансовой поддержке USAID, Washington DC, USA

- **ABT**, Defeat-TB county office, Кыргызстан
- IMLred: Институт Микробиологии и лабораторной медицины, Отдел науки, образования и развития (IML red GmbH), СНРЛ ВОЗ, Германия
- ИЦБ: Исследовательский Центр им. Лейбница Борстел, Германия
- KNCV, Challenge TB
- Национальный Центр Фтизиатрии, Кыргызстан
- НРЛ (Национальная референс-лаборатория)НЦФ

Pub Med.gov			
.807	Advanced		
		Save E	
Implementation tuberculosis dia	n of whole genome sec agnostics in a low-mid	quencing for	
Implementation	n of whole genome sec agnostics in a low-mid	quencing for	

Внешняя оценка качества ССП

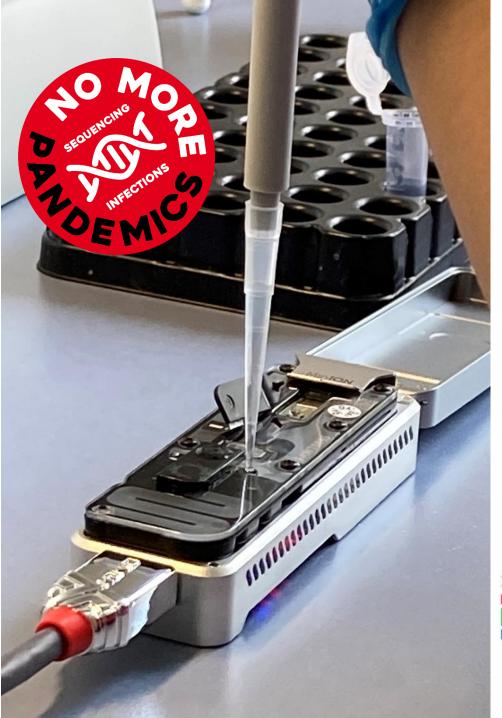
II. Внедрение секвенирования генома SARS-CoV-2

Оценочная миссия (ноябрь 2020):

•GIZ, SEEG команда (Германская Команда по обеспечению готовности к эпидемии)

•Сотрудничающий Центр ВОЗ, Университетская Клиника, Шарите, Берлин, Германия

•Институт им. Марциновского, Москва, Россия


Тренинг по проведению секвенирования SARS-CoV-2 в Кыргызстане, 11-26 мая 2021

• Обучено 11 человек (ДПЗиГСЭН, РЦКиООИ,ТБ)

https://youtu.be/nvuyXQDHSMs

Проведение секвенирования SARS-CoV-2 на базе НРЛ и ввод данных в базу GISAID

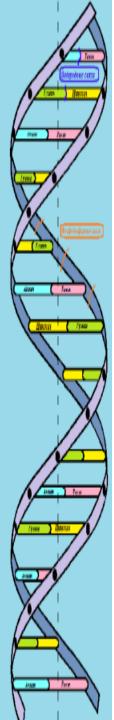
Dream Fund project "No more pandemics" Нанопоровое секвенирование для раннего выявления инфекционных заболеваний

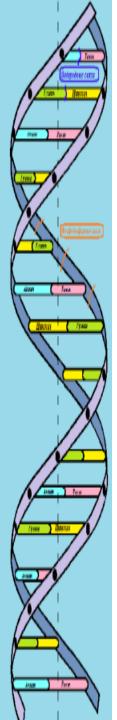
Лидерство: KNCV

Партнены: RIVM, Labmicta, НТП

Длительность: 5 лет

Период: 1 апреля 2021- 21 марта 2026

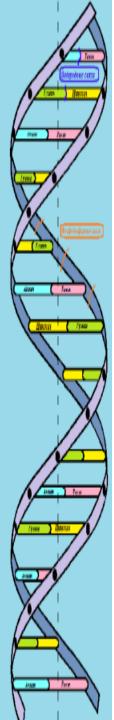

Финансирование: Dutch Postcode Lottery


Цель проекта:

Продемонстрировать использование нанопорового секвенирования с использованием платформы MinION для диагностики туберкулеза(ТВ), COVID-19, других инфекционных заболеваний, а также антибактериальной резистентности (AMR) в странах с низким и средним уровнем дохода.

Общественный фонд «KNCV-Кей Джи» предоставила 2 MinION платформы вместе с необходимыми реагентами в Национальную референс лабораторию.

12 июня 2023 года Общественный фонд «KNCV-Кей Джи» предоставила 2 MinION платформы вместе с необходимыми реагентами в Национальную референс лабораторию, Национального центра фтизиатрии МЗ КР. Национальная референс лаборатория в настоящее время внедряет нанопоровое секвенирование в рамках проекта "НЕТ ПАНДЕМИИ, СНОВА!".

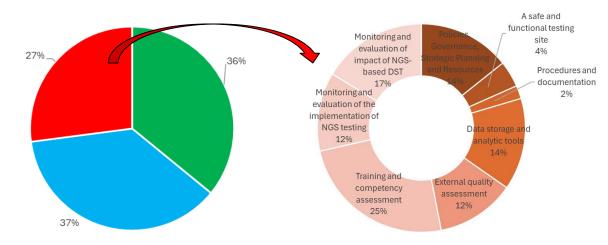

Под-задачи проекта

- Валидация целевого нанопорового секвенирования ТБ и SARS-CoV-2
- Определение значимых для пациента результатов целевого нанопорового секвенирования генома M.tuberculosis
- Демонстрация целесообразности нанопорового секвенирования для дозорного наблюдения за SARS-CoV-2
- Разработать и/или оценить метод "all-in-one" тестирования наАМР для приоритетных респираторных и других патогенов
- Осуществимость и приемлемость нанопорового секвенирования для диагностики туберкулеза в Кыргызстане
- Экономическая эффективность использования нанопорового секвенирования с использованием платформы MinION для диагностики ТБ и лекарственной устойчивости к ПТП

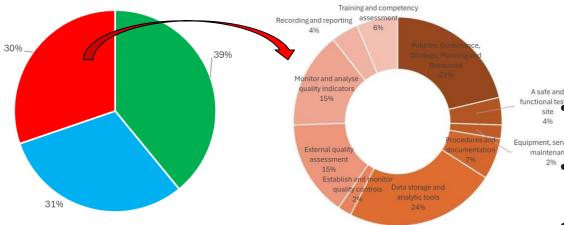
Первое нанопоровое секвенирование в Кыргызстане 12-15 сентября 2023

IV. Ситуационный анализ по оценке готовности НТП Кыргызстана к внедрению tNGS в программных условиях

Миссия экспертов Института San Raffaele IRCCS, г. Милан, Италия, при поддержке USAID

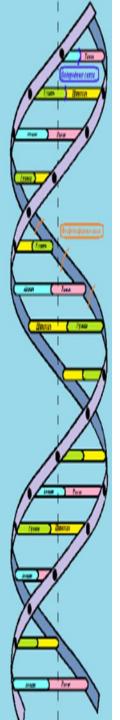

Визит экспертов из Института Сан-Раффаэле, 26 февраля -1 марта 2024

- Оценка готовности к внедрению целевого секвенирования в программных условиях с разработкой Плана Действий
- Обучение на рабочем месте сотрудников НРЛ НЦФ
- Вводное обучение врачей интерпретации результатов целевого секвенирования (ЦС)


Результаты – Оценка готовности НРЛ НЦФ

Part A. National-Level NGS Situational Analysis Checklist*

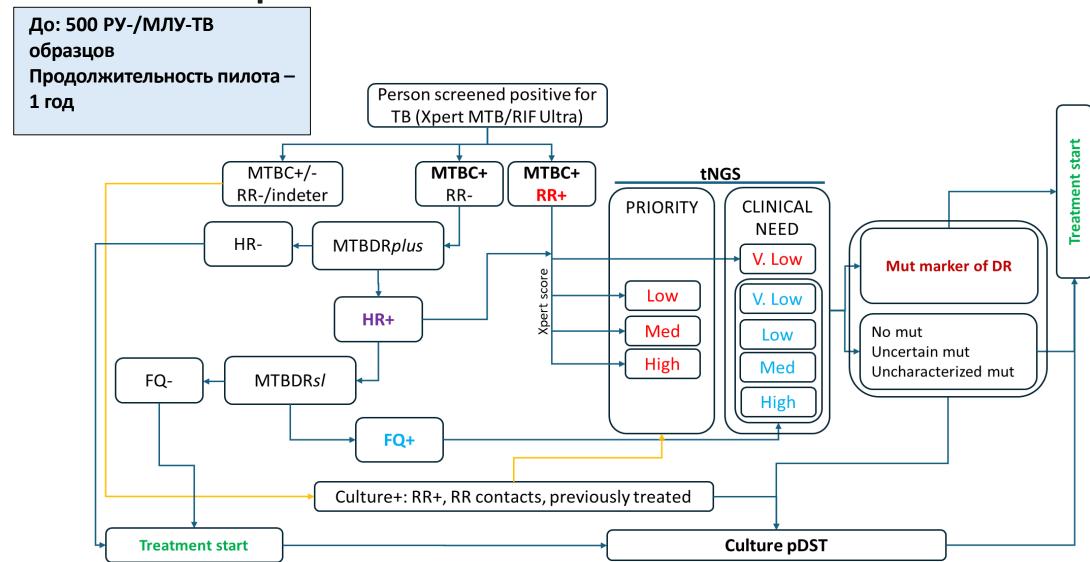
Part B. Site-Level NGS Situational Analysis
Checklist *


Achieved
 Partially achieved
 Not achieved

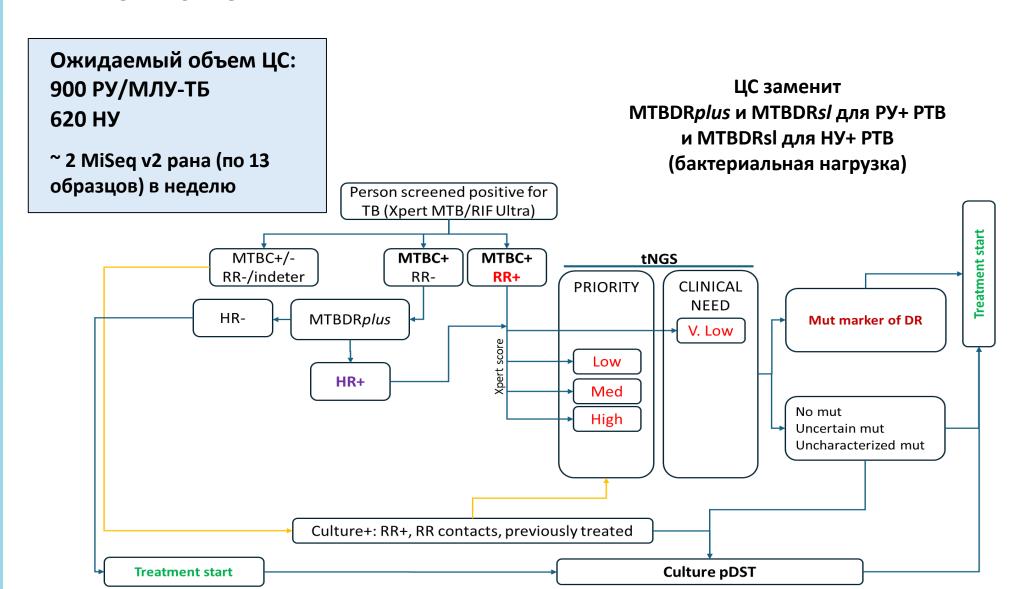
- Установить национальные требования к лабораторной инфраструктуре NGS, к сети ТБ лабораторий
- Разработать политику отчетности о результатах секвенирования
- Создать техническую/клиническую РГ
- Определить круг полномочий и процедуры оценки компетентности
 - лаборантов,
 - специалистов по биоинформатике,
 - врачей и работников здравоохранения,
 - сотрудников НТП
- Разработать
 - СОП по выдаче результатов
 - стандартизированные формы, регистры, журналы и электронные файлы для регистрации результатов NGS


Разработать и контролировать индикаторы для рабочего процесса NGS

- Разработать СОП по биоинформатике, используемом для анализа, интерпретации и отчетности о результатах NGS
- Создать адекватную экспертизу в области биоинформатики

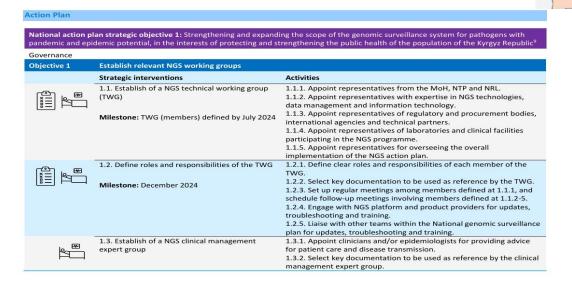


Результаты СА – НРЛ/НЦФ готова к использованию ЦС в программных условиях


- ✓ НТП определила сферу использования и схему процесса внедрения NGS (эпидемиологический контекст, лабораторная сеть и алгоритм тестирования)
- ✓ Цель разделяет видение Плана геномного надзора за инфекционными заболеваниями (2023-2025) в Кыргызской Республике
- ✓ Четкое понимание рабочего процесса лаборатории ЦС (ручные процедуры) в НРЛ и ЧС являются адекватным
- ✓ Секвенатор MiSeq и вспомогательное оборудование достаточно для программного использования. Для проведения эпиднадзора необходимо закупить еще оборудование
- ✓ Здание НРЛ/площади необходимо будет расширить для эпидемиологического надзора
- ✓ Необходимо обучение клиницистов интерпретации результатов ЦС

Пилотный алгоритм диагностики туберкулеза на основе ЦС

Предложен рутинный алгоритм диагностики туберкулеза на основе ЦС

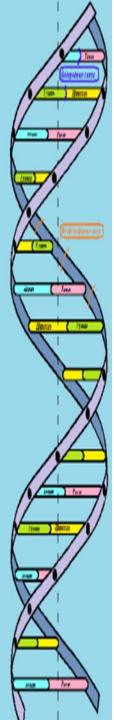


План действий по использованию ЦСП в программных целях

UZBEKISTAN

IIKISTAN

Разработан **План действий** по использованию NGS (секвенирования нового поколения) в повседневной клинической практике и для эпидемиологического надзора за туберкулезом в Кыргызстане.

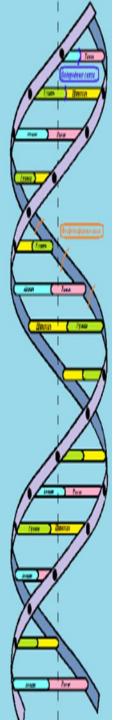


• Образцы для ЦС — транспортируются в НРЛ со всей страны

YSYK-KÖL

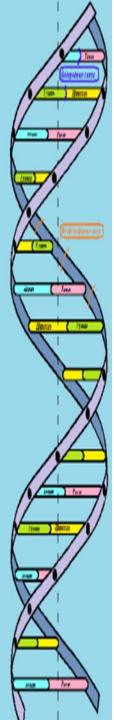
Smear microscopy

⁹ from "Genomic Surveillance Plan for Infectious Diseases for 2024-2025 in the Kyrgyz Republic."


План Действий: Определение целей и областей вмешательства

Запланированные цели:

- У ЦС обеспечивает ранние результаты ТЛЧ по РУ-/МЛУ-ТВ, что приводит к быстрому началу и более высокому набору на эффективные режимы (например, BPaL/M или более длительные)
- ▶ ЦС предлагает наиболее полный и своевременный выбор диагностики ЛУ-ТВ для врачей (снижение эмпирического лечения RR-/MDR-ТВ)
- ЦС обеспечивает улучшение результатов лечения пациентов
- ▶ ЦС заменяет тестирование LPA 2-й линии и частично LPA 1-й линии в НРЛ.
- ЦС заменяет частично фТЛЧ (зависит от контекста и препарата) в НРЛ


Области вмешательства и рекомендации:

- Планирование в стране: финансовые и кадровые обязательства для обеспечения устойчивости
- Оборудование и реагенты:
- Расширение инфраструктуры NGS для более широкого доступа после пилотного проекта (например, диагностика любого лекарственно-устойчивого туберкулеза и непрерывное наблюдение)
- > Высокие затраты на лаборатории NGS > ожидаемое сокращение за счет GDF
- Образование и обучение:
- Укрепление потенциала лабораторий, обучение биоинформатиков, врачей и сотрудников программы
- > Определение координатора NGS, создание рабочих групп по NGS

Мероприятия, проведенные в рамках проекта

- Разработка Плана действий по рутинному использованию NGS и надзору за туберкулезом в КР
- Разработка алгоритма использования целевого секвенирования
- Разработка формы отчетности для врачей
- Еженедельное обсуждение результатов секвенирования РГ в течение пилотирования ЦС
- Определение индикаторов для мониторинга эффективности использования результатов секвенирования

Предварительные результаты пилотного проекта

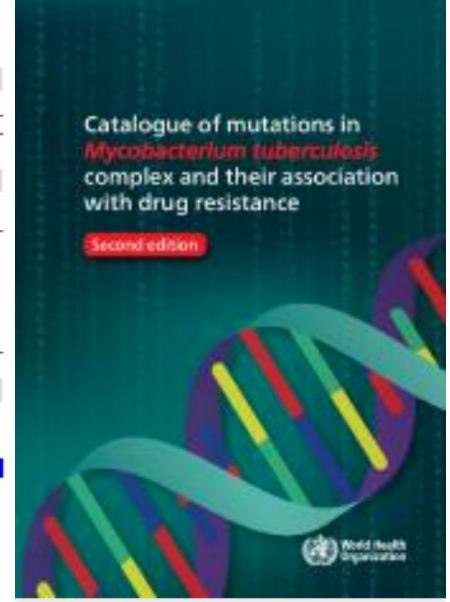
Цель. Оценить время выполнения и точность ЦС для тестирования лекарственной чувствительности и охарактеризовать популяционную структуру лекарственно-устойчивых *M. tuberculosis* в Кыргызской Республике.

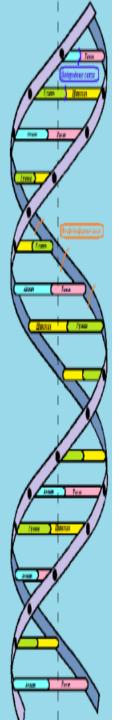
Методология. 432 клинических образца были подвергнуты рутинным диагностическим тестам на туберкулез. 333 результата секвенирования были проанализированы с помощью системы Deeplex-MycTB Report, GenoScreen.

- Профили резистентности ЦС сравнивались с профилями из Xpert MTB/RIF, анализа линейного зонда (GenoType MTBDRplus и GenoType MTBDRsl) и фТЛЧ.
- Соответствие, чувствительность, специфичность и общее согласованность теста сравнивались между методами исследования.

tNGS mutation analysis using the WHO MBTC Mutation Catalog, 2023

hsp65-based species identification						
Av coverage depth (x)	Consensus length	% Identity	E-value	Best match		
113.4	399.0	100	0.0	Mycobacterium tuberculosis complex		


Drug resistance associated variants³


Gene	Genomic	change	% Variant	Dx-score	AA change	DIOD	Confidence	PMID
	4247429	ATG306GTG	99.8	368.75	M306V	EMB	High	Campbell PJ et al., 2011
gyrB	6750	GCG504GTG	99.4	1348.25	A504V	FQ	High	ReSegTb
katG	2155168	AGC315ACC	99.9	231.75	S315T	INH	High	ReSegTb
pncA	2288839	ACC135CCC	99.4	761.25	T135P	PZA	High	ReSegTb
rpoB	761155	TCG450TTG	99.8	459.25	S450L	RIF	High	ReSegTb
rpsL	781687	AAG43AGG	99.8	119.00	K43R	SM	High	ReSeqTb
rv0678	779182	delG	86.2		frameshift	BDQ, CFZ		

Uncharacterized variants

Uncharacterized variants designate sequence variants of as yet unknown association with drug sensitivity or resistance.

Gene	Genomic position	Codon	% Variant	Dx-score	AA change	Drug
ethA	4326533	ACC314ATC	99.8	514.25	T314I	ETH

Вариант выдачи результатов ЦС клиницистам (тестовый режим)

Образец 10374-24:

- Peзультат Xpert MTB/RIF ULTRA S
- Пациент «ранее леченный"

ЦС:

- RIF Y u PZA-Y
- INH R (katG мутация с высокой степенью достоверности, остальные 4 мутации еще не охарактеризованы)
- ETM R (mutation in the embB gene high-confidence)
- Для других ПТП выявленные мутации неохарактеризованные или уровень доказательности не определен, или клиническая значимость неясна

Report for Deeplex Myc-TB assay (GenoScreen)

Patient ID: 10374-24 Quality: ++

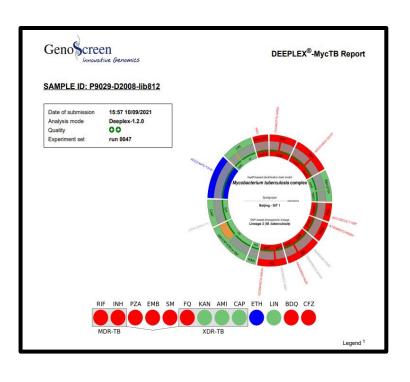
Patient name: *835694 Median coverage: 1667

Birth date: Species ID: Mycobacterium tuberculosis complex

Test: MTBC lineage: Lineage 2


SIT code: 796

Test date: 22.06.2024 Operator: Gulshan Mataeva


Page 1 / 1

Analysis of the mutations associated with drug resistance (M. tuberculosis complex)

Drug	Gene	Mutation	Frequency	Interpretation°	Comments
Rifampin				Susceptible	
Isoniazid	katG	99.740	S315T	Resistant	
	inhA	4.410	T196A	Uncharacterised	
	fabG1	10.040	c-78t	Uncharacterised	
	fabG1	9.330	C60Y	Uncharacterised	
Ethambutol	embB	99.660	M306I	Resistant	
	embB	3.070	T487A	Uncharacterised	
Pyrazinamide				Susceptible	
Levofloxacin	gyrA	11.110	R133W	Uncharacterised	
Moxifloxacin	gyrA	11.110	R133W	Uncharacterised	
Amikacin	rrs	18.460	c385t	Uncertain significance	
Ethionamide	ethA	13.520	V118I	Uncharacterised	
	ethA	99.850	G182S	Uncertain significance	
	inhA	4.410	T196A	Uncharacterised	
	fabG1	10.040	c-78t	Uncharacterised	
	fabG1	9.330	C60Y	Uncharacterised	
Bedaquiline	rv0678	9.950	R38Q	Uncharacterised	
	rv0678	4.900	G155R	Uncharacterised	
Linezolid	rrl	12.470	g2879a	Uncharacterised	
Clofazimine	rv0678	9.950	R38Q	Uncharacterised	
	rv0678	4.900	G155R	Uncharacterised	



Предварительное заключение.

- ▶В этом исследовании ЦС и LPA, а также фТЛЧ продемонстрировали высокий уровень соответствия
- ➤ТАТ ЦС 5-7 дней, фТЛЧ 14-21 день в среднем (до 30 дней)
- ➤ Назначение раннего индивидуализированного лечения улучшает эффективность лечения

Использование ЦС предлагает многообещающую альтернативу фТЛЧ, что особенно важно для Кыргызстана как страны с высоким бременем МЛУ-ТБ

Благодарю за внимание!