

Experiences of implementing WHO recommendations on TB diagnosis in children (TACTiC)

WHO-KNCV-MSF capacity building workshop

April 28-30, 2025

Almaty, Kazakhstan

Dr Cathy Hewison, Médecins Sans Frontières

Content

- Epidemiology TB in children
- TACTIC and new recommendations for TB in children
- Interim results from the TB ALGO PED study
- Conclusions

Tuberculosis in children: what is the problem?

Images courtesy of the WHO Global Tuberculosis Programme: Kerri Viney, Sabine Verkuijl, Annemieke Brands and Tiziana Masini. Link to the WHO Global TB Report 2024: https://www.who.int/publications/i/item/9789240101531

WHO recommendations: a unique opportunity

More children diagnosed	Shorter treatments	Shorter prevention
Treatment decision algorithms with or without Xray	4 months treatment for non severe TB	For household contacts: DS-TB: 3 months
Bacterial tests using stool samples	6 to 9 month treatments for DR-TB	DR-TB:
Rapid treatment initiation		0 11011113

Our goal: reduce deaths from TB in children, by increasing the number of children put on treatment and prevention

- Implementation of WHO recommendations: temporary support to strengthen capacity, training, technical and material support.
- * Operational research in 5 sites: Feasibility, acceptability and validation of recommendations
- * National and international advocacy: for implementation of recommendations and for research and development of new tools adapted to children.

Treatment decision algorithms

- Identify children with high risk of rapid TB progression
 - If high risk: investigate for TB and
 - If not high risk: treat for non-TB conditions and review after 1-2 w
- TB investigations: GeneXpert, TB-LAN chest X-ray
- History of contact with TB
- Score based on signs/symptoms and X-ray (Algorithm A) or only signs/symptoms (Algorithm B)

Signs and symptoms

Cough longer than 2 weeks Fever longer than 2 weeks Lethargy Weight loss Haemoptysis (cough up blood) Night sweats Swollen lymph nodes Tachycardia Tachypnoea

Sum A:

Treatment decision algorithms and operational guidance

Figure A5.1. Algorithm A (for settings with chest X-ray) and Algorithm B (for settings without chest X-ray)

Chest X-ray

2 5 3 3 4 2 4 2 1	Cavity/Cavities Enlarged lymph nodes Opacities Miliary Pattern Effusion	+6 +17 +5 +15 +8
<u> </u>	<u>Sum B:</u>	
	Initiate appropriate TB treatment	

Interim results TB ALGO PED study

 Diagnostic performance and feasibility of implementing two new treatment decision algorithms (TDAs) for pulmonary tuberculosis in children

A doctor examines a sick child at an MSF-supported facility in Maiduguri, Nigeria. Photo: Abba Adamu Musa/MSF

TB ALGO PED study – Design, sites and population

Four components

- Analysis of routine program data
- b. Prospective diagnostic study
 b.
 complete the study
 complete the stud
- C. Feasibility and acceptability study
- A. Documentation of the implementation experience

Population: children with symptoms of TB under 10 years of age

Cross-cutting lessons from the implementation of new treatment decision algorithms for pulmonary tuberculosis in children: results from the TB-ALGO-PED study

Ŷ

a. Analysis of routine data

TFC admissions

ITFC admissions and proportion with presumptive TB, Maiduguri, Nigeria

Children initiated on TB treatment (Dec 2022-Dec 2024)

Increase in children

diagnoses with TB

and started on

	Before algorithm implementation % (95% CI)	After algorithm implementation % (95% CI)
Guinea	0.4 (0.3 – 0.7)	2.2 (1.7 – 2.8)
Niger	0.6 (0.4 – 0.8)	2.2 (1.8- 2.6)
Nigeria	2.9 (2.3 - 3.7)	3.4 (3.1 – 3.8)
South Sudan	1.8 (1.1 - 2.3)	4.8 (3.9 – 5.8)
Uganda	0.6 (0.2 - 1.6)	3.9 (2.6 – 5.7)

Active cohort of children <10 years living with HIV and proportion initiated on TB treatment, Conakry, Guinea

Proportion presumptive

b. Prospective diagnostic study Interim results – Characteristics of the population

	All children N=1613 n (%)	Guinea N=130 n (%)	Niger N=345 n (%)	Nigeria N=504 n (%)	South Sudan N=216 n (%)	Uganda N=418 n (%)
Female	741 (45.9)	70 (53.8)	157 (45.5)	211 (41.9)	108 (50.0)	195 (46.7)
Age, median years [IQR]	1.7 [0.8-3.0]	6 [3-8]	1.2 [0.8-1.9]	1.8 [0.9-3]	1.0 [0.6-1.5]	2 [0.9-5]
Hospitalized	1282 (79.5)	0	340 (98.6)	504 (100)	205 (94.9)	103 (24.6)
High risk of rapid TB disease progression	1400 (86.8)	130 (100)	341 (98.8)	498 (98.8)	211 (97.7)	220 (52.6)
- Severely malnourished	1162 (72.0)	21 (16.2)	342 (99.1)	499 (99.0)	206 (95.3)	94 (22.4)
- Age < 2 years	893 (55.4)	11 (8.5)	259 (75.1)	259 (51.4)	171 (79.2)	193 (46.2)
- Living with HIV	168 (10.4)	130 (100)	1 (0.3)	3 (0.6)	10 (4.6)	24 (5.7)

b. Prospective diagnostic study: Procedures

- Medical history & clinical exam
- GeneXpert MTB/RIF in stool, gastric aspirate, NPA, sputum, tongue swabs (depending on country)
- Determine TB-LAM in urine (results given to clinicians only for children living with HIV)
- FujiLAM in urine (3 countries, results not given to clinicians)
- Chest X-ray if available
- POCUS (South Sudan)
- MTB culture (Uganda)

MSF staff review the algorithm usage in a Health Center in Conakry, Guinée, 2024. Photo: Emily Briskin

b. Prospective diagnostic study: GeneXpert positivity rate among children tested

	Test done n	Positive result n	Positivity rate %
Any body sample	1337	37	2.8
Gastric aspirate	1022	28	2.7
Stool	1192	26	2.2
Nasopharyngeal aspirate	154	2	1.3
Tongue swabs	130	1	0.8
Sputum	50	0	0.0

b. Prospective diagnostic study: Primary reason to start TB treatment following the algorithm cascade

	All children started on TB treatment N=430	High risk of rapid TB progression N=401	Not high risk of rapid TB progression N=29	Nigeria N=109 n (%)	Guinée N=83 n (%)
	n (%)	n (%)	n (%)	× 7	
Positive GeneXpert	29 <mark>(6.7)</mark>	28 (7.0)	1 (3.4)	14 (12.8)	1 (1.2)
Positive TB-LAM	24 (5.6)	24 (6.0)	-	0 (0.0)	21 (25.3)
TB contact	80 (18.6)	66 (16.5)	14 (48.3)	8 (7.3)	24 (28.9)
Algorithm score>10	297 (69.1)	283 (70.7)	14 (48.3)	87 (79.8)	34 (40.9)
- Algorithm score A	109 (25.3)	105 (26.2)	4 (13.8)	31 (28.4)	23 (27.7)
- Algorithm score B	188 (43.7)	178 (44.4)	10 (34.5)	56 (51.4)	11 (13.3)

Most of the children with positive Xpert (76%) or positive TB-LAM (63%) had also an algorithm symptom score >10

b. Prospective diagnostic study: **Diagnostic accuracy of the new treatment decision algorithms**

- Interim results (N=1354)
- Reference standard:
 - Confirmed and unconfirmed TB for sensitivity
 - Unlikely TB for specificity

Sensitivity	Specificity
% (95%CI)	% (95%CI)
91.3 (88.3-94.3)	87.6 (85.5-89.6)

International Consensus Case Definitions for Intrathoracic TB in children (Graham et al. CID 2015)

c. Feasibility and Acceptability Study: Interim results

- Well accepted by health workers
- Important to repeat training and maintain integrated clinical practice.
- Helped overcome barriers associated with diagnosing TB
- However, barriers among caregivers persisted (stigma, misconceptions).

"You can save a life if we get those algorithms right"

Conclusions

- The treatment decision algorithms led to high proportion of children started on TB treatment, especially at their first assessment
- Algorithms' scores were very useful score result was the main reason to start TB treatment
- Istory of TB contact was key frequent reason to start TB treatment particularly among children who were not at high risk of rapid TB disease progression
- Diagnostic accuracy of the new WHO recommended algorithms was high
- Increase in presumptive TB detection and TB treatment after algorithms' implementation observed in all study sites
- Well accepted by health workers

Many thanks to our study participants, research team, and partners

Connect with us online:

TB ALGO PED Study Web Page

TACTiC Policy report

